Фотон

Главная Глоссарий Математические вычисления и доказательства

Фотон (от др.-греч. φς, род. пад. φωτς, «свет») — элементарная частица, переносчик электромагнитного взаимодействия, квант электромагнитного поля. Фотоны обозначаются буквой γ, поэтому их часто называют гамма-квантами (особенно фотоны высоких энергий); эти термины практически синонимичны.

 История

Квантовый характер излучения и поглощения энергии электромагнитного поля был постулирован М. Планком в 1900 для объяснения свойств теплового излучения. Термин «фотон» введён химиком Г. Льюисом в 1926.

                         Фотон

Классификация

Элементарная частица

Бозон

Калибровочный бозон

Переносчик электромагнитного взаимодействия

 

Свойства

Обозначение:

γ или hν

Масса покоя:

0

Электрический заряд:

0

Спин:

1

 

В современной физике фотон — переносчик электромагнитного взаимодействия (часто называется элементарной частицей), фундаментальная составляющая света и всех других форм электромагнитного излучения.

Современная теория была разработана в 1905—1917 гг. Альбертом Эйнштейном для объяснения наблюдаемых в экспериментах противоречий с классической волновой теорией света, например при изучении фотоэффекта.

Предпринимались попытки объяснить аномальное поведение света полуклассическими моделями, в которых свет по-прежнему описывается уравнениями Максвелла, а объекты, излучающие и поглощающие свет, квантуются. Несмотря на то, что полуклассические модели оказали влияние на развитие квантовой механики, эксперименты полностью подтвердили правоту Эйнштейна о корпускулярной природе света.

Концепция фотона привела ко многим новым теориям и открытиям, например, лазер, конденсация Бозе - Эйнштейна, квантовая теория поля и вероятностная интерпретация квантовой механики. В соответствии со Стандартной Моделью физики элементарных частиц, фотоны ответственны за наличие всех электрических и магнитных полей, а само их существование следует из симметрии физических законов относительно пространства и времени. Внутренние свойства фотона (электрический заряд, масса и спин) определяются калибровочной симметрией.

Концепция фотонов имеет множество приложений, таких фотохимия, видеотехника, компьютерная томография, микроскопия высокого разрешения и измерение межмолекулярных расстояний. С недавнего времени фотоны также изучаются как элементы квантовых компьютеров и сложных приложений в передаче данных (квантовая криптография).

История названия и обозначения

Фотон изначально был назван «световым квантом» (das Lichtquant) его первооткрывателем, Альбертом Эйнштейном. Современное название, которое «фотон» получил от греческого слова φ?ς, «phos» (означает свет), было введено в 1926 химиком Гилбертом Н. Льюисом, который опубликовал теорию, в которой фотоны считались «несоздаваемыми» и «неразрушимыми». Хотя теория Льюиса никогда не использовалась, так как находилась в противоречии с экспериментами, термин фотон начал использоваться большинством физиков.

В физике, фотон обычно означается символом γ (греческая буква гамма). В химии и оптической инженерии, фотоны известно обозначение hν, где h — постоянная Планка и ν (греческая буква ню) — частота фотонов (произведение этих двух величин есть энергия фотона).

Физические свойства фотона

Фотон относится к калибровочным бозонам. Он не имеет массы покоя и электрического заряда, стабилен. Спин фотона равен 1, но из-за нулевой массы более правильное число — спиральность; по этой же причине внутренняя чётность фотона не определена. Является истинно нейтральной частицей (или, иными словами, является античастицей для самого себя). Зарядовая чётность отрицательная. Фотон участвует в электромагнитном и гравитационном взаимодействии.

Фотон имеет нулевую массу покоя, не имеет электрического заряда и не распадается спонтанно в вакууме. Фотон может иметь одно из двух состояний поляризации и описывается тремя пространственными параметрами — составляющими волнового вектора, который определяет его длину волны λ и его направление распространения. Фотоны излучаются во многих природных процессах, например, при движении электрического заряда с ускорением, когда атом или ядро переходят из возбужденного состояния в состояние с меньшей энергией, или при аннигиляции пары электрон - позитрон. При обратных процессах (возбуждение атома, рождение электрон-позитронных пар) происходит поглощение фотонов.

Поскольку фотон — безмассовая частица, он движется в вакууме со скоростью  с (скорость света в вакууме). Если его энергия равна Е, то импульс р связан с энергией соотношением Е=ср. Для сравнения, для частиц с ненулевой массой покоя связь массы и импульса с энергией определяется формулой Е22р2+m2c4 , как показано в специальной теории относительности.

Энергия и импульс фотона зависят только от его частоты ν (или, что то же самое, длины волны λ)

и, следовательно, величина импульса есть

где ћ - постоянная Планка (h/2π); k  - волновой вектор и k= 2π/λ - его величина (волновое число); k - указывает направление движения фотона. Фотон также имеет спин, который не зависит от частоты.

Попытки опровержения гипотезы фотона

До 1923 года большинство физиков отказывались верить в то, что электромагнитное излучение обладает квантовыми свойствами. Вместо этого они склонны были объянять поведение фотонов квантованием материи, как, например, в модели атома водорода, предложенной Бором. Хотя все полуклассические модели были опровергнуты экспериментами, они привели к созданию квантовой механики.

Как упомянуто в нобелевской лекции Роберта Милликена, предсказания, сделанные в 1905 г. Эйнштейном, были проверены экспериментально несколькими независимыми путями в первые два десятилетия 20-го века. Тем не менее, до знаменитого эксперимента Комптона большинство физиков неохотно соглашались с идеей корпускулярной природы электромагнитного излучения. Это неприятие объяснялось успехами волновой теории света Максвелла. Многие физики считали, что квантование энергии в процессах излучения и поглощения света являлось следствием неких свойств вещества, излучающего или поглощающего свет. Нильс Бор, Арнольд Зоммерфельд и другие создали модели атома с дискретными уровнями энергии, которые объясняли наличие спектров излучения и поглощения у атомов и, более того, находились в прекрасном согласии с наблюдаемым спектром водорода (правда, получить спектры других атомов в этих моделях не удавалось). Только рассеяние фотона свободным электроном (который не имеет внутренней структуры и, соответственно, не может иметь энергетических уровней) заставило многих поверить в квантовую природу света.

 

Эксперимент Томаса Юнга по диффракции света на двух щелях (1805) показал, что свет может рассматриваться как волна. таким образом были опровергнуты ранние теории света как потока элементарных частиц.

Корпускулярно-волновой дуализм

Корпускулярно-волновой дуализм, свойственный фотону, труден для понимания. С одной стороны, фотон демонстрирует свойства волны в явлениях дифракции и интерференции при масштабах, сравнимых с длиной волны фотона. Например, одиночные фотоны, проходящие через двойную щель создают на экране интерференционную картину, определяемую уравнениями Максвелла. Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделен на несколько пучков оптическими делителями лучей. Скорее, фотон ведет себя как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например, атомными ядрами), или, вообще, могут считаться точечными (например, электрон).

 

До 1923 года большинство физиков отказывались верить в то, что электромагнитное излучение обладает квантовыми свойствами. Вместо этого они склонны были объянять поведение фотонов квантованием материи, как, например, в модели атома водорода, предложенной Бором. Хотя все полуклассические модели были опровергнуты экспериментами, они привели к созданию квантовой механики.